Direkt Etanol Enjeksiyonlu Kırmızıbiberlerdeki Aspergillus Flavus Küflerinin Büyüme Kinetiği

Ahmet Levent İNANÇ, Ahmet AÇIK
1.268 245

Öz


Bu çalışmada etanol miktarların ve iki farklı sıcaklığın Aspergillus flavus küf mantarı üzerine etkisi araştırılmıştır. Taze kırmızıbiber meyveleri tüm haliyle deneysel olarak, küf gelişimini sağlamak için Aspergillus flavus ile kontamine edilmiştir. Daha sonra biberlere 1 ml, 3 ml, 5 ml oranlarında etanol enjekte edilmiş, 28 ve 37 °C’de 21 gün depolanmıştır. Küf sayımı sonuçlarına göre etanolün küf gelişimi üzerine oldukça etkili olduğu bulunmuştur (p<0.05). 28 ve 37 °C’deki etanol ilave edilmemiş (0 ml) kontrol örneklerindeki küf miktarlarında hızlı bir büyüme gözlemlenirken, kırmızıbiberlere enjekte edilen etanolün miktarı arttıkça küf gelişiminin azaldığı tespit edilmiştir (p<0.05). 37 °C’ de ki küf miktarlarının 28 °C’ de ki küf miktarlarına göre aynı günler için daha fazla olduğu gözlemlenmiştir (p<0.05). Logaritmik evredeki Aspergillus flavus’ların büyüme hız sabitlerini (k) belirlemek için birinci mertebeden hız denklemi kullanılmıştır. Her iki sıcaklıktaki k değerleri en yüksek kontrol örneklerinde bulunmuştur (28 °C’ de 1.13 ve 37 °C’ de 1.22 kob g-1 gün-1). 1, 3 ve 5 ml etanol enjekte edilmiş örneklerde ise sırayla 28 °C için 0.38, 0.23 ve 0.19 kob g-1 gün-1; 37 °C için 0.37, 0.26 ve 0.23 kob g-1 gün-1olduğu belirlenmiştir.

Anahtar Kelimeler: Aspergillus flavus, büyüme hız sabiti, etanol, kırmızıbiber, kinetik

 

Growth Kinetics of Aspergillus Flavus Moulds in Red Pepper with Direct Ethanol Injection

 

ABSTRACT: In this study, the effects of two different temperatures and different ethanol ratios on Aspergillus flavus moulds were investigated. Fresh whole red pepper fruits were experimentally contaminated with Aspergillus flavus to achieve mold growth. Then, Aspergillus flavus inoculated red peppers were injected ethanol (96%) at the ratios of 1, 3 and 5 ml and stored at 28 ve 37 °C for 21 days. The study showed that ethanol was highly effective on the mold growth (p<0.05). Albeit the rapid mould growth was observed in control samples without ethanol (0 ml) at 28 and 37 ° C, the mold growths in the ethanol injected samples decreased by increasing amount of ethanol. The mould amounts in all red pepper samples at 37°C were found to be greater than those of 28 °C for the same storage times. First order kinetic equation was used to determine the growth rate constant (k) of Aspergillus flavus. The highest k values were found in control samples for both two temperatures (1.13 cfu g-1 day-1 at 28 °C, 1.22 cfu g-1 day-1 at 37 °C). Additionally, the study concluded the growth ratio of  0.38, 0.23 and 0.19 cfu g-1 day-1 at 28 °C, and 0.37, 0.26 and 0.23 cfu g-1 day-1 at 37 °C for 1, 3 and 5 ml ethanol injected samples, respectively.

Key words: Aspergillus flavus, ethanol, growth rate constant, kinetics, red pepper 


Tam metin:

PDF


Referanslar


Akıncı S, Akıncı İE 1998. Kahramanmaraş Kırmızı Biber Üretiminin Sorunları ve Bu Sorunların Çözümüne Yönelik Öneriler. Kahramanmaraş Kırmızı Biberinin Sorunları ve Çözüm Yolları Paneli, 6 Mart, Kahramanmaraş.

Black RG, Quail KJ, Reyes V, Kuzyk M, Ruddick L 1993. Shelf-Life Extension of Pita Bread by Modified Atmosphere Packaging. Food Australia, 45: 387-391.

Bevilacqua A, Speranza B, Sinigaglia M, Maria Rosaria Corbo MR 2015. A Focus on the Death Kinetics in Predictive Microbiology: Benefits and Limits of the Most Important Models and Some Tools Dealing with Their Application in Foods. Foods, 4: 565-580.

Çoksöyler N 1999. Farklı Yöntemlerle Kurutulan Kırmızı Biberlerde Aspergillus flavus Gelişimi ve Aflatoksin Oluşumunun İncelenmesi. Gıda, 24(5): 297-306.

Dantigny P, Guilmart A, Radoi F, Bensoussan M, Zwietering M 2005. Modelling the Effect of Ethanol on Growth Rate of Food Spoilage Moulds. International Journal of Food Microbiology, 98(3): 261-269.

Dao T, Dantigny P 2011. Control of Food Spoilage Fungi by Ethanol. Food Control, 22 (3): 360-368.

Efe E, Bek Y, Şahin M 2000. SPSS’ te Çözümleri ile İstatistik Yöntemler II. Kahramanmaraş Sütçü İmam Üniversitesi Rektörlüğü, Yayın No: 9, Kahramanmaraş, 223s.

El-Khoury A 1999. Shelf-Life Extension Studies on Pita Bread. McGill University, Department of Food Science and Agricultural Chemistry, Degree of Master of Science, 143 s.

Erkmen O, Bozoglu TF 2008. Food Microbiology 2. Gazi Üniversitesi Vakfı, İlke Yayınevi, Yayın No: 1, Ankara, 173s.

Feliciano A, Feliciano J, Vendruscuolo J, Adaskaveg J, Ogawa JM 1992. Efficacy of Ethanol in Postharvest Benomyl-DCNA Treatments for Control of Brown Rot of Peach. Plant Disease, 76: 226-229.

Franke I, Wijma E, Bouma K 2002. Shelf Life Extension of Prebaked Buns by an Active Packaging Ethanol Emitter. Food Additives and Contaminants, 19: 314– 322.

Halkman AK 2005. Merck Gıda Mikrobiyolojisi Uygulamaları. Başak Matbaacılık Ltd. Şti., Ankara, 358s.

Halkman AK 2013. Gıda Mikrobiyolojisi II Ders Notları. Ankara Üniversitesi, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü, 89s.

Karabulut OA, Smilanick JL, Mlikota Gabler F, Mansour M, Droby S 2003. Near-Harvest Applications of Metschnikowia Fructicola, Ethanol, and Sodium Bicarbonate to Control Postharvest Diseases of Grape in Central California. Plant Disease, 87: 1384-1389.

Karabulut OA, Gabler FM, Mansour M, Smilanick JL 2004. Postharvest Ethanol and Hot Water Treatments of Table Grapes to Control Gray Mold. Postharvest Biology and Technology, 34(2): 169-177.

Karabulut OA, Romanazzi G, Smilanick JL, Lichter A 2005. Postharvest Ethanol and Potassium Sorbate Treatments of Table Grapes to Control Gray Mold. Postharvest Biology and Technology, 37: 129-134.

Mani-López E, Palou E 2016. Effect of Different Sanitizers on the Microbial Load and Selected Quality Parameters of “Chile De Árbol” Pepper (Capsicum Frutescens L.) Fruit A. López-Malo. Postharvest Biology and Technology, 119: 94–100.

Larson EL, Morton HE 1991. Alcohols, In: Block SS. ED. Disinfection, Sterilization, and Preservation. Lea and Febiger, 191–203.

Legan JD 1993. Mould Spoilage of Bread: The Problem and Some Solutions. International Biodeterioration and Biodegradation, 32: 33-53.

Makaracı A 2006. Farklı Kurutma Yöntemlerinin Kırmızı Biberlerde Aflatoksin Oluşumu Üzerine Etkisi. Trakya Üniversitesi. Fen Bil. Ens., Gıda Mühühendisliği ABD, Yüksek Lisans Tezi, 24 s.

Mannon J, Jonhson E 1985. Fungi Down by the Farm. New Scientist, 195: 12-16.

Margosan DA, Smilanick JL, Simmons GF, Henson DJ 1997. Combination of Hot Water and Ethanol to Control Postharvest Decay of Peaches and Nectarines. Plant Disease, 81: 1405–1409.

Mlikota Gabler F, Smilanick J, Aiyabei J, Mansour M 2002. New Approaches to Control Postharvest Gray Mold (Botrytis Cinerea Pers.) on Table Grapes Using Ozone and Ethanol. In: The World of Microbes, X. International Congress of Mycology, 27 July–1 August, Paris.

Nitterus M 2000. Ethanol as Fungal Sanitizer in Paper Conservation. Restaurator, 21: 101-115.

Pilna E, Vlkova K, Krofta V, Nesvadba V, Rada L, Kokoska A 2015. In Vitro Growth-Inhibitory Effect of Ethanol GRAS Plant and Supercritical CO2 Hop Extracts on Planktonic Cultures of Oral Pathogenic Microorganisms. Fitoterapia, 105: 260-268.

Pribis V, Svirzic G 1995. Application of Modem Colour Systems in Investigation of Colour Changes in Dry Fermented Sausages During Production. Fleischwirtschaft, 75(6): 819-821.

Romanazzi G, Karabulut OA, Smilanick JL 2007. Combination of Chitosan and Ethanol to Control Postharvest Gray Mold of Table Grapes. Postharvest Biology and Technology, 45: 134-140.

Salminen A, Latva-Kala K, Rendell K, Hurme E, Linkot P, Ahvenainen R 1996. The Effect of Ethanol and Oxygen Absorption on the Shelf-Life of Packed Sliced Rye Bread. Packaging Technology and Science, 9: 29-42.

Smith JP, Ooraikul B, Koersen WJ, Van de Voort FR, Jackson ED, Lawrence RA 1987. Shelf-Life Extension of a Bakery Product Using Ethanol Vapor. Food Microbiology, 4: 329-337.

Yeon-Hee K, Jeong Hwan K, Hyung-Joo J, Si Young L 2013. Antimicrobial Activity of Ethanol Extracts of Laminaria Japonica Against Oral Microorganisms. Anaerobe, 21: 34-38.