Yoncada (medicago sativa l.) Kuraklık Stresi ve Tolerantlık Mekanizması

İskender TİRYAKİ
1.365 442

Öz


Kuraklık dünya genelinde tarımsal üretimi tehdit eden en önemli abiyotik stres faktörlerinin başında gelmektedir. Ilıman iklim kuşağının en önemli bitkilerinden birisi olan yoncanın (Medicago sativa L.) sürdürülebilir tarıma sağladığı olumlu katkılar ve hayvan beslenmesindeki önemi, bu bitkinin dünya ve ülkemizdeki kıymetini giderek artırmaktadır. Gelişimini tamamlamış 3-4 yıllık yonca bitkisi kurağa kısmen tolerant olmasına karşın özellikle çimlenme ve erken fide evreleri ile biçim sonrası dönemlerde meydana gelebilecek kuraklık stresinden büyük oranda etkilenmektedir. Diğer taraftan yoncada kuraklık stresi uygulayarak doğrudan seleksiyon ya da klasik melezleme yolu ile mevcut genotipler arasında tolerant bitkilerin elde edilmesi, kurağa tolerantlığın düşük bir kalıtım değerine sahip olması ve zaman alıcı uygulamalar olması nedeniyle oldukça güçtür. İntrodüksiyon ve yabancı çeşitlerin bu amaçla kullanılması ise beraberinde adaptasyon ve royalty ödemeleri gibi farklı sorunları beraberinde getirmektedir. Biyoteknolojik yaklaşımlar kullanarak kurağa tolerant transgenik çeşitlerin geliştirilmesi kısmen mümkün olmakla birlikte bu bitkilerin kabulüne yönelik dünya genelindeki tartışmalar halen devam etmekte ve ülkemizde bu bitkilerin yetiştirilmesine izin verilmemektedir. Bu nedenle kurağa tolerant yeni bitki genotiplerinin geliştirilmesindeki başarılar, bitkilerin stres ilişkili morfolojik, fizyolojik ve moleküler mekanizmalarının anlaşılmasına ve bunların birlikte değerlendirildiği yeni ıslah yaklaşımlarına bağlıdır. Bu çalışmanın amacı güncel literatür varlığında bitkilerde ve özellikle de yoncada kuraklık stresi ve kurağa tolerantlık mekanizmasının anlaşılmasına katkı sağlamaktır.

Anahtar Kelimeler: Yonca, kuraklık, su stresi, tolerant

 

Drought Stress and Tolerance Mechanisms in Alfalfa (Medicago sativa L.)

 

ABSTRACT: Drought is one of the major abiotic stresses threatening agricultural productivity all around the world. Alfalfa (Medicago sativa L.) is the most important forage crop in temperate regions whose importance may further increase because of its positive contribution to sustainable agriculture and its productivity on animal feeding. Although 3-4 years old alfalfa is relatively drought tolerant, it is very vulnerable to drought stress at germination and early seedling growth stages as well as at regrowth stage right after grazing. On the other hand, development of drought tolerant alfalfa varieties by selection or classical crossing is very difficult to due to low heritability of drought tolerance traits and longtime requirement. Introduction of foreign drought tolerant varieties comes along with adaptation and royalty payment problems. Although it is possible to develop relatively drought tolerant transgenic varieties by applying biotechnological approaches, the acceptance of such crops are still controversial and planting of those crops is not yet allowed in our country. Therefore, success for development of drought tolerant new plant genotypes will depend on understanding of stress related morphological, physiological and molecular mechanisms, and collective use of such new breeding approaches. The aim of this study is to help the understanding of drought stress and tolerant mechanisms of plants, specifically alfalfa, under the light of current literature.

Keywords: Alfalfa, drought, water stress, tolerance


Tam metin:

PDF (English)


Referanslar


Akar, T., Francia, E., Tondelli, A., Rizza, F., Stanca, A.M., Pecchioni, N. 2009. Marker-assisted characterization of frost tolerance in barley (Hordeum vulgare L.). Plant Breeding, 128(4): 381-386.

Amtmann, A., Bohnert, H.J., Bressan, R.A. 2005. Abiotic stress and plant genome evolution. Search for new models. Plant Physiology, 138(1): 127-130.

An, Y.Y., Liang, Z.S. 2012. Staged strategy of plants in response to drought stress. Chin. J. Appl. Ecol., 23(10): 2907-15.

Annicchiarico, P. 2007. Lucerne shoot and root traits associated with adaptation to favourable or drought-stress environments and to contrasting soil types. Field Crops Research, 102(1), 51-59.

Annicchiarico, P., Pecetti, L., Torricelli, R. 2012. Impact of landrace germplasm, non-conventional habit and regional cultivar selection on forage and seed yield of organically grown lucerne in Italy. Journal of Agricultural Science, 150: 345-355.

Annicchiarico, P., Scotti, C., Carelli, M., Pecetti, L. 2010. Questions and Avenues for Lucerne Improvement. Czech Journal of Genetics and Plant Breeding, 46(1): 1-13.

Anyia, A.O., Herzog, H. 2004. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. European Journal of Agronomy, 20(4): 327-339.

Aranjuelo, I., Molero, G., Erice, G., Avice, J.C., Nogues, S. 2011. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J. Exp. Bot., 62(1): 111-23.

Asada, K. 2004. Functions of the water-water cycle in chloroplasts. Plant and Cell Physiology, 45: S11-S11.

Asada, K. 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 601-639.

Ashraf, M., Iram, A. 2005. Drought stress induced changes in some organic substances in nodules and other parts of two potential legumes differing in salt tolerance. Flora, 200: 535-546.

Avcıoglu, R., Geren, H., Tamkoç, A. 2009. Yonca (Medicago sp L.). (Yembitkileri. Baklagil Yembitkileri, Tarım ve Köyişleri Bakanlığı. İzmir: Ed. Avcıoglu, R., Hatipoglu, R., Karadag, Y.) Vol. Cilt II.

Basu, S., Roychoudhury, A., Saha, P.P., Sengupta, D.N. 2010. Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60(1): 51-59.

Bhatnagar-Mathur, P., Vadez, V., Sharma, K.K. 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Reports, 27(3): 411-424.

Bohnert, H.J., Jenson, R.G. 1996. Plant stress adaptations making metabolism move. Trends Biotech., 14: 267-74.

Bray, E.A. 2002. Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using Microarray and differential expression data. Annals of Botany, 89: 803-811.

Burke, J.J., Franks, C.D., Burow, G., Xin, Z. 2010. Selection System for the Stay-Green Drought Tolerance Trait in Sorghum Germplasm. Agronomy Journal, 102(4): 1118-1122.

Campos, H., Cooper, A., Habben, J.E., Edmeades, G.O., Schussler, J.R. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Research, 90(1): 19-34.

Caruso, A., Chefdor, F., Carpin, S., Depierreux, C., Delmotte, F.M., Kahlem, G., Morabito, D. 2008. Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves. Journal of Plant Physiology, 165(9): 932-41.

Cattivelli, L., Baldi, P., Crosatti, C., Di Fonzo, N., Faccioli, P., Grossi, M., Mastrangelo, A.M., Pecchioni, N., Stanca, A.M. 2002. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 48(5): 649-665.

Chen, J., Wu, W., Zheng, Y., Hou, K., Xu, Y., Zai, J. 2010. Drought resistance of Angelica dahurica during seedling stage under polyethylene glycol (PEG-6000)-simulated drought stress. China journal of Chinese Materia Medica, 35(2): 149-53.

Chimenti, C.A., Pearson, J., Hall, A.J. 2002. Osmotic adjustment and yield maintenance under drought in sunflower. Field Crops Research, 75(2-3): 235-246.

Çarpıcı, E.B., Erdel, B. 2015. Bazı yonca çeşitlerinde (Medicago sativa L.) kuraklık stresinin çimlenme özellikleri üzerine etkisi. Derim, 32(2):201-210.

Demirbas, S., Vlachonasios, K.E., Acar, O., Kaldis, A. 2013. The effect of salt stress on Arabidopsis thaliana and Phelipanche ramosa interaction. Weed Research, 53(6): 452-460.

Denison, F.C., Paul, A.L., Zupanska, A.K., Ferl, R.J. 2011. 14-3-3 proteins in plant physiology. Semin Cell. Dev. Biol., 22(7): 720-7.

Ferl, R.J. 1996. 14-3-3 Proteins and Signal Transduction. Annu Rev Plant Physiol Plant Mol Biol, 47: 49-73.

Ferradini, N., Iannacone, R., Capomaccio, S., Metelli, A., Armentano, N., Semeraro, L., Cellini, F., Veronesi, F., Rosellini, D. 2015. Assessment of heat shock protein 70 induction by heat in alfalfa varieties and constitutive overexpression in transgenic plants. PLoS One, 10(5): e0126051.

Forster, B.P., Ellis, R.P., Moir, J., Talame, V., Sanguineti, M.C., Tuberosa, R., This, D., Teulat-Merah, B., Ahmed, I., Mariy, S.A.E.E., Bahri, H., El Ouahabi, M., Zoumarou-Wallis, N., El-Fellah, M., Ben Salem, M. 2004. Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Annals of Applied Biology, 144(2): 157-168.

Foyer, C.H., Noctor, G. 2000. Oxygen processing in photosynthesis: regulation and signalling. New Phytologist, 146(3): 359-388.

Francia, E., Tacconi, G., Crosatti, C., Barabaschi, D., Bulgarelli, D., Dall'Aglio, E., Vale, G. 2005. Marker assisted selection in crop plants. Plant Cell Tissue and Organ Culture, 82(3): 317-342.

Fuller, B., Stevens, S.M., Jr., Sehnke, P.C., Ferl, R.J. 2006. Proteomic analysis of the 14-3-3 family in Arabidopsis. Proteomics, 6(10): 3050-9.

Ge, T., Sui, F., Bai, L., Lu, Y., Zhou, G. 2006. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agr. Sci. China., 5(4): 291-298.

George, S., Usha, B., Parida, A. 2008. Isolation and Characterization of an Atypical LEA Protein Coding cDNA and its Promoter from Drought-Tolerant Plant Prosopis juliflora. Appl Biochem Biotechnol., 157(2):244-53.

Ghandilyan, A., Barboza, L., Tisne, S., Granier, C., Reymond, M., Koornneef, M., Schat, H., Aarts, M.G.M. 2009. Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in Arabidopsis thaliana under drought. New Phytologist, 184(1): 180-192.

Hancock, J.T., Smirnoff, N., Foyer, C.H. 2006. Oxygen metabolism coming up ROSes: a holistic view of the redox metabolism of plant cells - Preface. Journal of Experimental Botany, 57(8): Iv-V. doi: 10.1093/jxb/erl024.

Harris, K., Subudhi, P.K., Borrell, A., Jordan, D., Rosenow, D., Nguyen, H., Klein, P., Klein, R., Mullet, J. 2007. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. Journal of Experimental Botany, 58(2): 327-38.

Hazen, S.P., Pathan, M.S., Sanchez, A., Baxter, I., Dunn, M., Estes, B., Chang, H.S., Zhu, T., Kreps, J.A., Nguyen, H.T. 2005. Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Funct. Integr. Genomics, 5: 104-116.

Hoang, T.B., Kobata, T. 2009. Stay-Green in Rice (Oryza sativa L.) of Drought-Prone Areas in Desiccated Soils. Plant Production Science, 12(4): 397-408.

Huyghe, C. 2003. Les fourrages et la production de protéines. Fourrages, 174: 145-162.

Idso, S.B., Reginato, R.J., Reicosky, D.C., Hatfield, J.L. 1981. Determining Soil-Induced Plant Water Potential Depressions in Alfalfa by Means of Infrared Thermometry. Agronomy Journal, 73(5): 826-830.

Imlay, J.A. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol., 57: 395-418.

Jiang, H.F., Ren, X.P. 2004. The effect on SOD activity and protein content in groundnut leaves by drought stress. AAS, 30: 169- 174.

Johnson, W.C., Davis, R.G. 1980. Yield-Water Relationships of Summer-Fallowed Winter-Wheat - a Precision Study in the Texas Panhandle. Science and Education Administration Publications, Arr(Ns-5), 1-43.

Kaplan, Ş., Güçlü, Ş., Baytekin, G., Tiryaki, İ. 2015. Yonca (Medicago sativa L.) ve Çayır Üçgülü (Trifolium pratense L.) Tohumlarının Tuz Ve Kuraklık Stresine Verdikleri Tepkilerin Belirlenmesi. Türkiye 11. Tarla Bitkileri Kongresi, 7-10 Eylül , Çanakkale.

Karamanos, A.J., Papatheohari, A.Y. 1999. Assessment of drought resistance of crop genotypes by means of the water potential index. Crop Science, 39(6): 1792-1797.

Kishore, P.B.K., Hong, Z., Miao, G.-U., Hu, C.-A., Verma, D.P.S. 1995. Overexpression of D-pyrroline-5-carboxylase synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol., 108: 1387-1394.

Lamb, J.F.S., Sheaffer, C.C., Rhodes, L.H., Sulc, R.M., Undersander, D.J., Brummer, E.C. 2006. Five decades of alfalfa cultivar improvement: Impact on forage yield, persistence, and nutritive value. Crop Science, 46(2): 902-909.

Lanceras, J.C., Pantuwan, G., Jongdee, B., Toojinda, T. 2004. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology, 135(1): 384-399.

Levitt, J. 1980a. Responses of plants to environmental stress. Academic Press, New York.

Levitt, J. 1980b. Responses of plants to environmental stress. Academic Press., New York.

Li, H., Wang, Z., Ke, Q., Ji, C.Y., Jeong, J.C., Lee, H.S., Lim, Y.P., Xu, B., Deng, X.P., Kwak, S.S. 2014. Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiol. Biochem., 85: 31-40.

Li, J., Dai, X., Liu, T., Zhao, P.X. 2012. LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res., 40(Database issue), D1221-9.

Li, J., Dai, X., Zhuang, Z., Zhao, P.X. 2016. LegumeIP 2.0-a platform for the study of gene function and genome evolution in legumes. Nucleic Acids Res., 44(D1), D1189-94.

Li, X.M., Brummer, E.C. 2012. Applied Genetics and Genomics in Alfalfa Breeding. Agronomy, 2: 40-61.

Liu, Z., Chen, T., Ma, L., Zhao, Z., Zhao, P.X., Nan, Z., Wang, Y. 2013. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One, 8(12): e83549.

Mahajan, S., Tuteja, N. 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2): 139-158.

Mayfield, J.D., Paul, A.L., Ferl, R.J. 2012. The 14-3-3 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system. Journal of Experimental Botany, 63(8): 3061-70.

Mccoy, T.J., Smith, L.Y. 1983. Genetics, Cytology, and Crossing Behavior of an Alfalfa (Medicago-Sativa) Mutant Resulting in Failure of the Postmeiotic Cytokinesis. Canadian Journal of Genetics and Cytology, 25(4): 390-397.

McKersie, B.D., Leshem, Y. 1994. Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, Netherlands.

Morgan, J.M. 2000. Increases in grain yield of wheat by breeding for an osmoregulation gene: relationship to water supply and evaporative demand. Australian Journal of Agricultural Research, 51(8): 971-978.

Mortimore, M. 2008. Ecosystems and Human Well-being: Current State and Trends. (Current State ve Trends Assessment-Chapter 22, Millennium Ecosystem Assessment: Ed. Anderson, S., Cotula, L., Faccer, K., Hesse, C., Mwangi, A., Nyangena, W., Skinner, J.

Moussa, H.R., Abdel-Aziz, S.M. 2008. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science, 1(1): 31-36.

Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. 1999. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant Journal, 18(2): 185-193.

Nawaz, A., Farooq, M., Cheema, S.A., Yasmeen, A., Wahid, A. 2013. Stay Green Character at Grain Filling Ensures Resistance against Terminal Drought in Wheat. International Journal of Agriculture and Biology, 15(6): 1272-1276.

Peltzer, D., Dreyer, E., Polle, A. 2002. Temperature dependencies of antioxidative enzymes in two contrasting species. Plant Physiol. Biochem., 40: 141-150.

Postnikova, O.A., Shao, J., Nemchinov, L.G. 2013. Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol, 54(7): 1041-55.

Puleo, C.M., Liu, K., Wang, T.H. 2006. Pushing miRNA quantification to the limits: high-throughput miRNA gene expression analysis using single-molecule detection. Nanomedicine (Lond), 1(1): 123-7.

Quan, W., Liu, X., Wang, H., Chan, Z. 2016. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Frontiers in Plant Science, 6. 1256.

Ramachandra Reddy, A., Chaitanya, K.V., Jutur, P.P., Sumithra, K. 2004. Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environ. Exp. Bot. , 52: 33-42.

Romo, S., Labrador, E., Dopico, B. 2001. Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiology and Biochemistry, 39(11): 1017-1026.

Rouhi, V., Samson, R., Lemeur, R., Van Damme, P. 2006. Stomatal resistance under drought stress conditions induced by PEG 6000 on wild almond. Commun Agric. Appl. Biol. Sci, 71(1): 269-73.

Rouhi, V., Samson, R., Van Damme, P., Lemeur, R. 2004. Effects of drought stress induced by PEG 6000 on leaf water status of one domestic (Amygdalus dulcis) and two wild almond (A. lycioides and A. scoparia) species. Commun Agric. Appl. Biol. Sci., 69(2): 239-41.

Sakamoto, A., Murata, N. 2002. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell and Environment, 25(2): 163-171.

Sanchez, A.C., Subudhi, P.K., Rosenow, D.T., Nguyen, H.T. 2002. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Molecular Biology, 48(5): 713-726.

Selote, D.S., Bharti, S., Khanna-Chopra, R. 2004. Drought acclimation reduces O2 accumulation and lipid peroxidation in wheat seedlings. Biochem. Bioph. Res. Co., 314: 724-729.

Sharma, P., Dubey, R.S. 2005. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J. Plant Physiol., 162(8): 854-64.

Sheaffer, C.C., Tanner, C.B., Kirkham, M.B. 1988. Alfalfa water relations and irrigation. (Alfalfa and Alfalfa Improvement., ASA, CSSA, SSSA Publishers. Madison: Ed. Hanson, A.A., Barnes, D.K., Hill, R.R.) 373-409.

Sofo, A., Tuzio, A.C., Dichio, B., Xiloyannis, C. 2005. Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Sci., 169: 403-412.

Tambussi, E.A., Bartoli, C.G., Beltrano, J., Guiamet, J.J., Araus, J.L. 2000. Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum). Physiol. Plantarum., 108: 398-404.

Tang, L., Cai, H., Ji, W., Luo, X., Wang, Z., Wu, J., Wang, X., Cui, L., Wang, Y., Zhu, Y., Bai, X. 2013. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol. Biochem., 71: 22-30.

Tardieu, F. 2005. Plant tolerance to water deficit: physical limits and possibilities for progress. C.R. Geoscience, 337: 57-67.

Teulat, B., Monneveux, P., Wery, J., Borries, C., Souyris, I., Charrier, A., This, D. 1997. Relationships between relative water content and growth parameters under water stress in barley: a QTL study. New Phytologist, 137(1): 99-107.

Teulat, B., This, D., Khairallah, M., Borries, C., Ragot, C., Sourdille, P., Leroy, P., Monneveux, P., Charrier, A. 1998. Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 96(5): 688-698.

Tian, F., Gong, J., Zhang, J., Zhang, M., Wang, G., Li, A., Wang, W. 2013. Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. Journal of Experimental Botany, 64(6): 1509-20.

Torres, G.A.M., Pflieger, S., Corre-Menguy, F., Mazubert, C., Hartmann, C., Lelandais-Briere, C. 2006. Identification of novel drought-related mRNAs in common bean roots by differential display RT-PCR. Plant Science, 171(3): 300-307.

Trinchant, J.C., Boscari, A., Spennato, G., Van de Sype, G., Le Rudulier, D. 2004. Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol, 135(3): 1583-94.

Tuberosa, R., Salvi, S. 2006. Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science, 11(8): 405-412.

Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., Zhu, J.K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal, 46(6): 1092-1092.

Verslues, P.E., Juenger, T.E. 2011. Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Current Opinion in Plant Biology, 14(3): 240-245.

Voldseth, R.A., Johnson, W.C., Gilmanov, T., Guntenspergen, G.R., Millett, B.V. 2007. Model estimation of land-use effects on water levels of northern prairie wetlands. Ecological Applications, 17(2): 527-540.

Voltas, J., Lopez-Carcoles, H., Borras, G. 2005. Use of biplot analysis and factorial regression for the investigation of superior genotypes in multi-environment trials. European Journal of Agronomy, 22(3): 309-324.

Wang, J., Zhao, Y., Ray, I., Song, M. 2016. Transcriptome responses in alfalfa associated with tolerance to intensive animal grazing. Sci Rep., 6: 19438.

Wang, T., Chen, L., Zhao, M., Tian, Q., Zhang, W.H. 2011. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics, 12: 367.

Wang, T.Z., Liu, M., Zhao, M.G., Chen, R., Zhang, W.H. 2015. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol., 15: 131.

Wang, T.Z., Zhang, W.H. 2013. Genome-wide identification of microRNAs in Medicago truncatula by high-throughput sequencing. Methods Mol. Biol., 1069: 67-80.

Wang, W.B., Kim, Y.H., Lee, H.S., Kim, K.Y., Deng, X.P., Kwak, S.S. 2009. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol. Biochem., 47(7): 570-7.

Wissuwa, W., Smith, S.E., Ottman, M.J. 1997. Crown moisture and prediction of plant mortality in drought-stressed alfalfa. Irrig. Sci., 17: 87-91.

Woodfield, D.R., Brummer, E.C. 2001. Integrating molecular techniques to maximize the genetic potential of forage legumes. (Molecular Breeding of Forage Crops., Kluwer: Ed. Dordrecht S. G.) 51-65.

Wu, K., Rooney, M.F., Ferl, R.J. 1997. The Arabidopsis 14-3-3 multigene family. Plant Physiology, 114(4): 1421-31.

Wu, Q.S., Xia, R.X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4): 417-425.

Wu, Q.S., Zou, Y.N., Xia, R.X. 2006. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. European Journal of Soil Biology, 42(3): 166-172.

Yan, J., He, C., Wang, J., Mao, Z., Holaday, S.A., Allen, R.D., Zhang, H. 2004. Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a "stay-green" phenotype and improves stress tolerance under moderate drought conditions. Plant and Cell Physiology, 45(8): 1007-14.

Zhang, Y.M., Zhang, H.M., Liu, Z.H., Li, H.C., Guo, X.L., Li, G.L. 2015. The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium. Plant Mol. Biol., 87(3): 317-27.

Zhou, Y.F., Wang, D.Q., Lu, Z.B., Wang, N., Wang, Y.T., Li, F.X., Xu, W.J., Huang, R.D. 2013. Impacts of drought stress on leaf osmotic adjustment and chloroplast ultrastructure of stay-green sorghum. Chin. J. Appl. Ecol., 24(9): 2545-50.

Zhu, J., Li, Z., Kang, H., Fan, Y. 2005. Effects of polyethylene glycol (PEG)-simulated drought stress on Pinus sylvestris var. mongolica seed germination on sandy land. Chin. J. Appl. Ecol.,, 16(5): 801-4.

Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annu Rev. Plant. Biol., 53: 247-73.