Malik Asit Uygulamalarının S.aureus Biyofilmleri Üzerinde Antibiyofilm Etkileri

Tuğba KÖKÜMER, Meltem YEŞİLÇİMEN AKBAŞ
1.343 227

Öz


ÖZET: Bu çalışmada, malik asit uygulamalarının S. aures biyofilmleri üzerindeki antibiyofilm aktiviteleri incelenmiştir. Biyofilmlerin malik asit uygulamaları ile azalma oranları, klor uygulaması ile karşılaştırılmıştır. Malik asit ve klor uygulamalarının biyofilmler üzerindeki etkileri hem polistren hemde çelik yüzeylerde incelenmiştir. Malik asit uygulamaları, S. aureus biyofilmlerini klor uygulamasından daha etkin bir şekilde engellenmiş ve ortadan kaldırmıştır. Çelik yüzeylerde biyofilmlerin azalma oranlarının daha fazla olduğu belirlenmiştir. Sonuçlar, malik asitin gıda ile temas eden yüzeylerde biyofilm oluşumları için ümit verici çevreyle dost bir uygulama olabileceğini göstermektedir.

Anahtar Kelimeler: Biofilm, malik asit, S. aureus, gıda ile temas eden yüzeyler

 

Antibiofilm Effects of Malic Acid Treatments on S. Aureus Biofilms

 

ABSTRACT: In this study, antibiofilm activities of malic acid treatments on S. aureus biofilmswere investigated. The reduction ratios of biofilms by malic acid treatments were compared with chlorine treatment. The effects of sanitizers on biofilms were evaluated on both on polystyrene and stainless steel surfaces. Malic acid treatment more efficiently inhibitedand removed S. aureus biofilms than chlorine treatment.The higher reduction ratios were obtained on stainless steel surfaces. The results show that malic acidcould be a potential promising eco-friendlytreatment for biofilm formations in food contact surfaces.

Key Words: Biofilm, malic acid, S. aureus, food contact surfaces


Tam metin:

PDF (English)


DOI: http://dx.doi.org/10.18016/ksujns.91762

Referanslar


Akbas, M.Y., Kokumer T., 2015. The prevention and removal of biofilm formation of Staphylococcus aureus strains isolated from raw milk samples by citric acid treatments. International Journal of Food Science and Technology, 50(7): 1666–1672.

Akbas, M.Y., Olmez, H. 2007. Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Letters in Applied Microbiology, 44: 619-624.

Arciola, C. R., Campoccia, D., Ravaioli, S., Montanaro, L. 2015. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in Cellular and Infection Microbiology, 5:7. doi: 10.3389/fcimb.2015.00007.

Corcoran, M.., Morris, D., De Lappe, N., O'Connorb, J., Lalor, P., Dockery, P., Cormican M. 2014. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Applied and Environmental Microbiology, 80 (4): 1507-1514.

Corpe, WA. 1980. Microbial surface components involved in adsorption of microorganisms onto surfaces. In: Bitton G, Marshall KC, editors. Adsorption of microorganisms to surfaces. New York: John Wiley and Sons; p. 105-144.

Cos, P., Tote, K., Horemans, T., Maes. L. 2010. Biofilms an extra hurdle for effective antimicrobial therapy. Current Pharmaceutical Design, 16: 2279-2295.

Di Ciccio, P., Vergara, A., Festino, A.R., Paludi, D., Zanardi, E., Ghidini, S., Ianieri, A. 2015. Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity.Food Control, 50: 930–936.

Donlan, R.M., Costerton, J.W. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15: 167-193.

Durlu-Özkaya, F., Cömert, M. 2008. Gıda zehirlenmelerinde faktörler. Türk Hijyen ve Deneysel Biyoloji Dergisi, 65(3):149-158.

Eswaranandam, S., Hettiarachchy, N.S., Johnson, M.G. 2004. Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli, O157:H7, and Salmonella Gaminara. Journal of Food Science, 69: 79-84.

Flemming, H.C., Wingender, J. 2010. The biofilm matrix. Nature Reviews Microbiology, 8(9):623-633.

González-Fandos, E., Herrera, B. 2013. Efficacy of malic acid against Listeria monocytogenes attached to poultry skin during refrigerated storage.Poultry Science,92(7):1936-1941.

Günaydin, B., Aslantaş, Ö., Demir, C. 2011. Detection of superantigenic toxin genes in Staphylococcus aureus strains from subclinical bovine mastitis. Tropical Animal Health and Production, 43(8): 1633–1637.

Haas C.N., Engelbrecht. R.S. 1980. Physiological alterations of vegetative microorganisms resulting from chlorination. Journal of Water Pollution Control Federation, 52:1976–1989.

Karagözlü, C., Karagözlü, N. 2004. Süt endüstrisinde deterjan ve dezenfektan kalıntılarının önemi. Harran Universitesi Ziraat Fakültesi Dergisi, 8(3/4): 73-81

Knowless, J.R., Roller, S., Murray, D.B., Naidu, A.S. 2005. Antimicrobial action of carvacrol at different stages of dual species biofilm development by Staphylococcus aureus and Salmonella enterica Typhimurium. Applied and Environmental Microbiology, 71: 797-803.

Lou, Y. Yousef, A.E. 1999. Characteristics of Listeria monocytogenes important to food processors. In Listeria, Listeriosis and Food Safety, 2nd Ed. (E.T. Ryser and E.H. Marth, eds.), 131–224, Marcel Dekker, Inc., New York, NY.

Lu, Huiying J., Breidt, Jr., Frederick, Pérez-Díaz, Ilenys M., Osborne, Jason A. 2011. Antimicrobial effects of weak acids on the survival of Escherichia coli O157:H7 under anaerobic conditions. Journal of Food Protection, 74(6):893-898.

Mah, T.F.C., O’Toole, G.A. 2001. Mechanisms of biofilm reisitance to antimicrobial agents. Trends in Microbiology, 9: 34-39.

Marques, S.C., Rezende, J.G.O.S., Alves, L.A.F., Silva, B.C, Alves, E., Abreu, L.R., Piccoli, R.H. 2007. Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers. Brazilian Journal of Microbiology, 38: 538-543.

Mertz, D., Frei, R., Jaussi, B., Tietz, A., Stebler, C., Flückiger, U., Widmer, A.F. 2007. Throat swabs are necessary to reliably detect carriers of Staphylococcus aureus.Clinical Infectious Disease, 45(4):475-457.

Peles, F., Wagner, M., Varga, L., Hein, I., Rieck, P., Gutser, K., Keresztúri, P., Kardos, G., Turcsányi, I., Béri, B., Szabó, A. 2007. Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. International Journal of Food Microbiology,118 (2): 186–193.

Rashid, Z., Farzana, K., Sattar, A., Murtaza, G. 2012. Prevalence of nasal Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in hospital personnel and associated risk factors. Acta Poloniae Pharmaceutica, 69 (5): 985-991.

Raybaudi-Massilia, M.R., Melgar, J.M, Sobrıno

López, A. Martın-Belloso, A. 2009. Inactivation of Listeria monocytogenes, Salmonella interitidis and Escherichia coli O157:H7 and shelf life extension of fresh-cut pears using malic acid and quality stabilizing compounds. Journal of Food Quality, 32,(5): 539–565.

Ricke, S.C. 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82: 632–639.

Scherrer, D., Corti, S., Muehlherr, J. E., Zweifel, C., Stephan, R. 2004. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from raw bulk-tank milk samples of goats and sheep. Veterinary Microbiology, 101: 101-107.

Simoes, M. 2011. Antimicrobial strategies effective against infectious bacterial biofilms. Current Medicinal Chemistry, 18: 2129-2145.

Singla, R., Goel, H., Ganguli, A. 2014. Novel synergistic approach to exploit the bactericidal efficacy of commercial disinfectants on the biofilms of Salmonella enterica serovar Typhimurium. Journal of Bioscience Bioengineering,118(1):34-40.

Srey, S., Jahid, I.K., Ha, S.D. 2013. Biofilm formation in food industries: a food safety concern. Food Control, 31(2):572–585.

Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., Svabic-Vlahovic, M. 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40: 175–179.

Syne, S., Ramsubhag, A. Adesiyun, A. 2013. Microbiological hazard analysis of ready-to-eat meats processed at a food plant in Trinidad, West Indies. Infection Ecology and Epidemiology, 3. doi:http://dx.doi.org/10.3402/iee.v3i0.20450

Van Belkum, A., Verkaik, N.J., de Vogel, C.P., Boelens, H.A., Verveer, J., Nouwen, J.L., Verbrugh, H.A., Wertheim, H.F. 2009. Reclassification of Staphylococcus aureus nasal carriage types. Journal of Infectious Disease, 199(12):1820-1826.

Williams, V., Fletcher, M. 1996. Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Applied and Environmental Microbiology, 62: 1004.

Xu,C., Yagiz, Y., Hsu, W.Y., Simonne, A., Lu, J., Marshall, M.R. 2014. Antioxidant, antibacterial, and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens, Journal of Agricultural Food Chemistry, 62(28): 6640–6649.

Zinke, C., Winter, M. , Mohr, E., Krömker, V. 2012. Occurrence of methicillin-resistant Staphylococcus aureus in cheese produced in German farm-dairies. Advances in Microbiology, 2: 629-633.