Genetic Impact Determination of Farmed Fish on Native Fish by mtDNA Markers

ALİ KAYACI, Mehmet Fatih CAN, Yusuf GÜNER, Fatih GÜLEÇ, Mehmet İKİZ
2.499 537


Abstract: Aquaculture is one of the world’s fastest-developing and growing food-producing sectors. The subsector’s expansion commenced in the 1970’s, actuated by move forwards in hatchery technology and pond husbandry. Aquaculture and especially fish farming, however, have been discussed as negative potential effects on environment.  The negative potential effects are, direct mortality, loss of biodiversity, tainting of wild species. Moreover these are disease transmission to other species, displacement of wild fish from natural habitat.

Although these negative potential effects, cultural fish represent genetically exogenous populations or crosses between them. Some pauper gen pool of cultured fish population can develop with fertile gen pool of natural fish population or just the opposite of them.

It can be said that cultured fish typically constitute gene pools. We need an observation which brings an urgent focus for conservation between natural populations and spawning populations. In this review it was observed negative genetic impacts of escaped farmed fish population on wild fish population by mtDNA markers.

Keywords: Genetic impact, escaped farmed fish, molecular markers, mtDNA markers

Anahtar kelimeler

Genetic impact, escaped farmed fish, molecular markers, mtDNA markers

Tam metin:

PDF (English)



Aquilino S.V.L, Tango J.M., Fontanilla, IKC, Pagulayan RC, Basiao ZU, Ong PS, Quilang JP, 2011. DNA Barcoding the ichthyofauna of Taal Lake, Philippines. Molecular Ecology Resources, 11: 612–619.

Avise J.C. 1994. Molecular Markers, Natural History and Evolution, Chapman and Hall NewYork.

Baharum S.N, Nurdalila A.Z, 2012. Application of 16s rDNA and cytochrome b ribosomal markers in studies of lineage and fish populations structure of aquatic species. Molecular Biology Reports, 39(5):5225-5232.

Bargelloni L., Alarcon J. A., Alvarez M. C., Penzo E., Magoulas A., Reis C. Patarnello T., 2003. Discord in phylogeographical patterns across the Atlantic– Mediterranean divide. Blackwell Publıshıng Ltd. J .Evol.Biol. 16 (2003) pp. 1149–1158.

Bernatchez L., Colombani F., Dodson J. J., 1991. Phylogenetic relationships among the subfamily Coregoninae as revealed by mitochondrial DNA restriction analysis. Journal of Fish Biology, 39 (Supplement): 283–290.

Bernatchez L., Guyomard R., Bonhomme F., 1992. DNA sequence variation of the mitochondrial control morphologically remote European brown trout Salmotrutta populations. Molecular Ecology, 1:161- 173. geographically and

Bentsen, H.H., Gjerde, B. 1994. Design of fish breeding programs. In: Proceedings of the 5thworld congress of genetics applied to livestock production. Department of Animal Science. University of Guelph. Guelph. ON. 19. 553-39.

Birky, C.W., Fuerst, P. Maruyama, T. 1989. Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effect of heteroplasmic cells, and comparison to nuclear genes. Genetics, 121(3): 613-627.

Brown, W.M. 1985. The mitochondrial genome of animals. In: Evolutionary Genetics, Plenum, New York, 95-130. Molecular

Brugère, C., Ridler, N. 2004. Global aquaculture outlook in the next decades; an analysis of national aquaculture production forecasts to 2030. FAO Fisheries Circular No. 1001. Rome, FAO. 2004. 47p.

Cawthorn D-M, Steinman H. A., Witthuhn R. C. 2011. Establishment of a mitochondrial DNA sequence database for the identification of fish species commercially available in South Africa. Molecular Ecology Resources, 11: 979– 991.

Cross, T. F. N. T. Challanain, D. N. 1991. Genetic characterisation of Atlantic salmon (Salmosalar) lines farmed in Ireland. Aquaculture, 9: 209-216.

Dimitriou, E., Katselis, G., Moutopoulos, D. K., Akovitiotis, C., Koutsikopoulos, C. 2007. Possible influence (Sparusaurata, L.) on wild stocks in the area of the Messolonghi Aquaculture Research, 38: 398–408. sea bream lagoon (Ionian Sea, Greece).

Duarte, C.M., Marba, N., Holmer, M. 2007. Rapid domestication of marine species. Science 316: 382– 383.

De Eyto, E., McGinnity, P., Consuegra, S., Coughlan, J., Tufto, J., Farrell, K., Megens, H.J., Jordan, W., Cross, T., Stet, R.J.M. 2007. Natural selection acts on Atlantic salmon major histocompatibility (MH) variability in the wild. Proceedings of the Royal Society of London series B 274: 861-869.

Esposti, D.M., De Vries, S., Crimi M., Ghelli A., Patarnello T., Meyer A. 1993. Mitochondrial cytochrome b: evolution and structure of the protein. Biochim. Biophys. Acta., 1143:243-271.

Farias I. P., Orti G., Sampaio I., Schneider H., Meyer A. 2001. The Cytochrome b Gene as a Phylogenetic Marker: The Limits of Resolution for Analyzing Relationships Among Cichlid Fishes. Journal of Molecular Evolution 53: 89-103.

Farias I.P., Meyer A., Ortí G., Sampaio, I. 2000. Total evidence: phylogenetics of cichlids fishes. J. Exp. Zool. (MolDevEvol) 288:76–92 morphology, and the

Ferguson, A. J. B. T., Taggart, J. B., Prodöhl, P. A., McMeel, O., Thompson, C., Stone, C., Hynes, R. A. 1995. The application of molecular markers to the study and conservation of fish populations, with special reference to Salmo sp. Journal of Fish Biology, 47 (sA), 103-126.

Ferguson, A., Fleming, I., Hindar, K., Skaala, Ø., McGinnity, P., Cross, T.F., Prodöhl, P. 2007. Farm escapes. In: Conservation and Management (Verspoor, E., Stradmeyer, L. & Nielsen, J.L., eds.). Blackwell Publishing Ltd, pp. 357-398.

Flassch, J. P., Leborgne, Y. 1994. Introduction in Europe, from 1972 to 1980, of the Japanese Manila clam (Tapes philippinarum) and the effects on aquaculture settlement.In Introductions and Transfers of Aquatic and natural Distinguishing aquaculture and wild yellow tail kingfish via natural elemental signatures in otoliths. Mar. Freshw. Res., 56:693–704.

Jensen Q.,Fredheim A., Dempster T., Thorstad E. B., Uglem I. 2010. Escapes of fishes from Norwegian sea-cage aquaculture: causes, consequences and prevention, Aquaculture Environment Interactions, Published online August 2012, Vol.1: 71-83

Jİrstad K. E., Van Der Meeren T., Paulsen O. I., Thomsen T., Thorsen A., Svåsand T. 2008 ‘Escapes’ of eggs from farmed cod spawning in net pens: recruitment to wild stocks. Rev. Fish Sci. 16:285– 295.

Hebert P. D., Stoeckle M. Y., Zemlak T. S., Francis C. M. 2004. Identification of Birds through DNA Barcodes. PLoSBiol 2: e312.

Hubert N., Hanner R., Holm E., Mandrak N. E., Taylor E, et al. 2008. Identifying Canadian freshwater fishes through DNA barcodes. PLoS One. 3(6): e2490.

Kartavtsev Y. Ph., Sharina S. N., Goto T. , Balanov A. A. Hanzawa, N. 2009. Sequence diversity at cytochrome oxidase 1 (Co-1) gene among sculpins (Scorpaeniformes, Cottidae) and some other scorpionfish of Russia Far East with phylogenetic and taxonomic insights. Genes & Genomics 31 (2): 183-197.

Knibb, W. 2000. Genetic Improvement of Marine Fish – Which Method for Industry? Aquaculture Research, 31, 11-23.

Lakra WS, Verma MS, Goswamii M, Lal KK, Mohindra V, Punia P, Gopalakrishnan A, Singh KV, Ward RD, Hebert PDN, Indian Resources, 11: 60–71.

20 DNA Barcoding Fishes. Molecular Ecology

Magoulas, A., Tsimenides, N., Zouros, E. 1996. Mitochondrial Reconstruction of the Population History of a Species: The Case of the European Anchovy (Engraulisencrasicolus) Mol. Biol. Evol., 13(1):178- 190. Phylogeny and the

Martins, C. Wasko, A. P. Oliveira, C., Foresti, F. 2003. Mitochondrial populations of Leporinuselongatus from the Paraná River basin. Genet. Mol. Biol., 26 (1):33-38. wild

Mecklenburg C. W., Moller P. R., Steinke D. 2011. Biodiversity of arctic marine fishes: Taxonomy and zoogeography. Marine Biodiversity, 41: 109–140.

Meyer, A. 1993. Evolution of mitochondrial DNA in fishes. In: Mochachka, P.W. and Mommsen, T.P. Eds., Biochemistry and molecular biology of fishes, Elsevier Press Amsterdam, New York, 1-38.

Moe, H., Dempster T., Sunde L. M., Winther U., Fredheim A. 2007a.Technological solutions and operational measures to prevent escapes of Atlantic cod (Gadusmorhua) from sea-cages. Aquac. Res., 38:91–99.

Nicolas V., Schaeffer, B. Missoup A. D., Kennis, J. Colyn, M., Denys, C. Tatard, C. Cruaud, C. Laredo, C. 2012. Assessment of three mitochondrial genes (16S, Cytb, CO1) for identifying species in the Praomyini tribe (Rodentia: Muridae). PloS ONE 7(5): e36586.

Naylor R., Hindar K., Fleming Ian A., Goldburg, R., Williams, S., Volpe J., Whoriskey, F., Eagle J., Kelso D., Mangel, M., 2005. Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. Bioscience, 55(5):427–437.

Norwegian Directorate of Fisheries, 2009.Statistics for

200Norwegian Aquaculture Fisheries,

tatistikk (accessed 6 Aug 2010) (in Norwegian)

Okumuş, I., and Çiftci, Y. 2003. Fish population genetics and molecular markers: II-molecular markers and their applications in fisheries and aquaculture. Turkish Journal of Fisheries and Aquatic Sciences, 3: 51-79.

Rodwell, L. D., Barbier, E. B., Roberts, C. M., McClanahan, T. R. 2003. The importance of habitat quality for marine reserve fishery linkages. Canadian Journal of Fisheries and Aquatic Sciences, 60(2): 171-181.

Scientific Advisory Committee, 2009. The status of Norwegian salmon stocks in 2009 and catch advice. Report from the Scientific Advisory Committee for Atlantic Salmon Management in Norway No. 1. Vitenskapeligrådforlakseforvaltning, Trondheim (In Norwegian with English summary)

Smith, M. D. 2007. Generating value in habitat- dependent fisheries: the importance of fishery management Economics, 83(1):59-73. institutions. Land

Soto D., Jara F., Moreno C. 2001. Escaped salmon in the inner seas, southern Chile: facing ecological and social conflicts. Ecol. Appl., 11:1750–1762.

Skaala, O., Dahle, G., Jorstad, K. E., Naevdal, G. 1990. Interactions populations: information from genetic markers. Journal of Fish Biology, 36: 449-460.

Tacon, A. J. 2003. Aquaculture production trends analysis. FAO Fisheries Circular, (Rev. 2), 5–29.

Toledo Guedes K., Sanchez-Jerez P., Gonzalez-Lorenzo G., Brito Hernandez A. 2009. Detecting the degree of establishment of a non-indigenous species in coastal ecosystems: sea bass Dicentrarchuslabrax escapes from sea cages in Canary Islands (Northeastern Central Atlantic). 623:203–212. Hydrobiologia,

Valland, A. 2005. The causes and scale of escapes from In: salmon aquaculture and wild stocks of Atlantic salmon and other diadromous fish species: science and management, ICES/NASCO Bergen 18-21 October 2005, pp. 15.

Utter, F., Epifanio, J. 2002. Marine aquaculture: genetic potentials and pitfalls. Reviews in Fish Biology and Fisheries, 12:59–77.

Ward R. D., Zemlak T. S., Innes B. H., Last P. R., Hebert P. D. 2005. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360: 1847–1857.

Lee A. Weigt , Carole C. Baldwin, Amy Driskell, David G. Smith, Andrea Ormos, Eric A. Reyier, 2012. Using DNA Barcoding to Assess Caribbean Reef Fish Biodiversity: Geographic Coverage. PloS ONE 7(7): e41059. doi:10.1371/journal.pone.0041059.

Weber, E.D., Fausch, K. D. 2003. Interactions between hatchery and wild salmonids in streams: differences in biology and evidence for competition. Canadian Journal of Fisheries and Aquatic Sciences, 60: 1018–1036. Welcomme R.L.,

Bartley, D. M. 1998. Current

approaches to the enhancement of fisheries.

Fisheries Management and Ecology, 5: 351–382.

Wilson, A.C., Cann, R.L., Carr, S.M., George, M., Gyllensten, U.B., Helm-Bychowski, K.M., Higuchi, R.G., Palumbi, S.R., and Prager, E.M. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of Linnean Society, 26(4):375-400.

Youngson, A. F., Jordan, W. C., Hay, D. W. 1994. Homing of Atlantic salmon (Salmosalar L.) to a tributary spawning stream in a major river catchment. Aquaculture, 121: 259-267.