Using X-ray Computed Tomography Measurements to Predict Body Composition and Carcass Quality of Live Animals

3.703 1.005


There are many technologies available to measure body composition and they differ in accuracy, reliability and cost, at the present time. For example, ultrasound scanners, originally used in diagnostic medicine for humans, have been adapted in the last 20-30 years for use on farm animal species with considerable success. The data from live animal using computer technology (CT) for index selection also obtained high genetic gain per generation. This scope, using by CT in live animals can be measured total carcass weight, amount of fat, muscle, and bone, rate of carcass fat, muscle and bone, carcass yield, muscle: bone and muscle: fat ratio, percentage of shoulder, back and chest muscles of parts of the eye muscle length and depth. More recently, especially the United Kingdom and New Zealand in some countries, including, the use of CT in carcasses has been used to successfully in pigs, sheep, beef cattle poultry and fish breeding. Nevertheless, these methods are expensive and need specific equipment. In this review, using CT technology opportunities was assessed to determine improving body composition and carcass quality of live animals.

Anahtar kelimeler

Karkas kalitesi, Seleksiyon, Et, Çiftlik Hayvanları

Tam metin:

PDF (English)


Allen, P., Leymaster, K.A., 1989. Machine Error In xRay Computer Tomography and Its Relevance To Prediction of In Vivo Body Composition. Live. Prod. Sci. 13: 383-398.

Amer, P.R., Nieuwhof, G.J., Pollott, G.E,, Roughsedge, T., Conington. J., Simm, G., 2007. Industry benefits from recent genetic progress in sheep and beef populations. Animal. 1: 1414-1426.

Arthur, P.F., Barchia, I.M., Giles, L.R., Eamens G.J., 20 Chemical composition of growing pigs and its relationship with body tissue composition assessed by X-ray-computed tomography. J. Anim. Sci. 89 (12): 3935-3944.

Asher, G.W., Archer, J.A., Ward, J.F., Mackintosh, C.G., Littlejohn, R.P., 2011. The effect of prepubertal castration of red deer and wapiti-red deer crossbred stags on growth and carcass production. Livest. Sci.137:196-204.

Bertolini, G., Prokop, M., 2011. Multidetector-row computed tomography: Technical basics and preliminary clinical applications in small animals. Vet. J.189 (1):15-26.

Brenİe, U.T., Kolstad, K., 2000. Body Composition and Development Measured Repeatedly by Computer Tomography During Growth in Two Types of Turkeys. Poultry Sci. 79: 546-552.

Bünger, L.. Macfarlane, J.M., Lambe, N.R., Conington, J., McLean, KA., Moore, K., Glasbey, C.A., Simm, G., 2011. Use of X-Ray Computed Tomography (CT) in UK Sheep Production and Breeding, CT Scanning Techniques and Applications, Dr. Karupppasamy Subburaj (Ed.), ISBN: 978-953-307943Cavanagh, C.R., Jonas, E., Hobbs, M., Thomson, P.C., Tammen, I., Raadsma, H.W., 2010. Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL. Gen. Sel. Evol. 42: 36 doi:1186/1297-9686-42-36.

Cemal, İ., Karaca, O., Altın, T., Gokdal, O., Yılmaz, M., Yılmaz, O., 2007. Ultrasound Measurments of Eye Muscle Properties and Backfat Thicness in Kivircik

Lambs. Journal of Biological Science. 7(1):89-94. Ceyhan, A., 2013. CT Scanning Service. Technical visit. 05.06.2013. Edinburgh/ Scotland.

Çilek, S., Tekin M.E, 2004. Koyunlarda karkas derecelendirmesi, Hayvancılık Araştırma Dergisi, 14 (1-2): 103-110.

Çilek, S., Tekin, M.E, 2005. Koyun karkaslarının derecelendirmesinde ultrasonik yöntemler ve sondaların kullanılması, Hayvancılık Araştırma Dergisi. 15(2):17-23.

Donaldson, C.L., Lambe, N.R., Maltin, C.A., Knott, S., Bunger, L., 2013. Between -and within-breed variations of spine characteristics in sheep. J. Anim. Sci. 91(2): 995-1004.

Emmans, G.C., Kyriazakis, I., Fisher, C., 2000. Consequences of selecting for growth and body composition characteristics in poultry and pigs. The challenge of genetic change in animal production. pp. 39-53, BSAS.

Glasbey, C.A., Young, M.J., 2002. Maximum a posteriori estimation of image boundaries by dynamic programming. J. Roy. Stat. Soc. C-App. 51: 209-2

Hill, W.G., Bishop, S.C., McGuirk, B., Mckay, J.C., Simm, G., Webb, A.J., 2000. The challenge of genetic change in animal production. Foreword to publication. The challenge of genetic change in animal production. (Hill W.G., Bishop, S.C., McGuirk, B., Mckay, J.C., Simm, G., Webb, A.J, eds) pp. BSAS.

Humann-Ziehank, E., Brauer, C., Kuks, A., Andreae, A., Bruegmann, M.L., Ganter, M., 2011. Imaging and score-based quantification of ovine pulmonary adenocarcinoma using computed tomography as an additional tool in advanced clinical diagnosis. Small Ruminant Res. 96: 201-210.

İnce, D., Ayhan, V., 2008. Koyunlarda Karkas Kalitesinin Belirlenmesinde Kullanılan Yöntemler. Hayvansal Üretim 49(1): 57-61.

Jones, H.E., Lewis, R.M., Young, M.J., Wolf, B.T., 200 The use of X-ray computer tomography for measuring the muscularity of live sheep. Anim. Sci. 75: 387-399. Karamichou, E., Richardson, R.I., Nute, G.R., McLean, K.A., Bishop, S.C., 2006. A partial genome scan to map quantitative trait loci for carcass composition, as assessed by X ray computer tomography, and meat quality traits in Scottish Blackface Sheep. Anim. Sci. 82: 301-309.

Karamichou, E.B., Merrell, G., Murray, W.A., Simm, G., Bishop, S.C., 2007. Selection for carcass quality in hill sheep measured by X-ray computer tomography. Animal.1: 3-11.

Kempster, A.J., 1986. Correlations between indirect and direct measurements of body composition. P. Nutr. Soc. 45: 55-62.

Kim, W.K., Bloomfield, S.A., Ricke, S.C., 2011. Effects of age, vitamin D3, and fructooligosaccharides on bone growth and skeletal integrity of broiler chicks. Poultry Sci. 90: 2425-2432.

Kor, A., Ertuğrul, M., 2000. Canlı Hayvanda Karkas Kompozisyonu Tahmin Yöntemleri. Hayvansal Üretim. 41: 91-101.

Korver, D.R., Saunders-Blades, J.L., Nadeau, K.L., 200 Assessing Bone Mineral Density In Vivo: Quantitative Computed Tomography. Poultry Sci. 83: 222-229. Krause, W., 1999. Delivery of diagnostic agents in computed tomography. Adv. Drug. Delivery. Rev. 37:159-173.

Kupai, T., Baulain, U., Lengyel, A., 2009. Growth modelling of different ram breeds using computer tomography. Small Ruminant Res. 87: 1-8.

Kvame, T., McEwan, J.C., Amer, P.R., Jopson, N.B., 200 Economic benefits in selection for weight and composition of lamb cuts predicted by computer tomography. Livest. Prod. Sci. 90: 123-133. Kvame, T., Vangen, O., 2006. In-vivo composition of carcass regions in lambs of two genetic lines, and selection of CT positions for estimation of each region. Small Ruminant Res. 66: 201-208.

Kvame, T., Vangen, O., 2007. Selection for lean weight based on ultrasound and CT in a meat line of sheep. Livest. Sci.106: 232-242.

Lambe, N.R., McLean, K.A., Macfarlane, J.M., Johnson, P.L., Jopson, N.B., Haresign, W., Richardson, R.I., Bünger, L., 2010. Predicting intramuscular fat content of lamb loin fillets using CT scanning. Proceedings of the Farm Animal Imaging Congress, Rennes, France, 2010.

Lambe, N.R., Navajas, E.A., McLean, K.A., Simm, G., Bünger, L., 2007. Changes in carcass traits during growth in lambs of two contrasting breeds, measured using computer tomography. Livest. Sci. 107: 37-52. Macfarlane, J.M., Lambe, N.R, Bishop, S.C., Matika, O., Rius-Vilarrasa, E., McLean, K.A., Haresign, W., Wolf, B.T., McLaren, R.J., Bünger, L., 2009. Effects of the Texel muscling quantitative trait locus on carcass traits in crossbred lambs. Animal. 3 (2): 189-1

Macfarlane, J.M., Lewis, R.M., Emmans, G.C., Young, M.J., Simm, G., 200 Predicting carcass composition of terminal sire sheep using X-ray computed tomography. Anim. Sci. 82 (3): 289-300. Macfarlane, J.M., Lewis, R.M., Emmans, G.C., Young, M.J., Simm, G., 2009. Predicting tissue distribution and partitioning in terminal sire sheep using x-ray computed tomography. J. Anim. Sci. 87: 107-118.

Mann, A.D., Young, M.J., Glasbey, C.A., McLean, K.A., 2008. STAR: Sheep Tomogram Analysis Routines (V.4.8). BioSS software documentation, University of Edinburgh.

Mantis, P., Baines, E., 2007. Computed tomography: Why use it in small animal practice? Vet. J. 173(2): 237-2

Maximini, L., Brown, D.J., Baumung, R., Fuerst-Waltl, B., 2012. Genetic parameters of ultrasound and computer tomography scan traits in Austrian meat sheep. Livest. Sci. 146, 168-174.

Muller, T., Molnar, T., Szabo, A., Yamaha, E., Jarasi, E.Z., Bercsenyi, M., Specziar, A., Urbanyi, B., Romvari, R., 2012. In Vivo Tracking of Maturation in Male European Eel, Anguilla Anguilla (L.), By Computed Tomography. Acta. Biol. Hung. 63(2): 180-188, 2012.

Narsaiah, K., Shyam, N., 2012. Nondestructive methods for quality evaluation of livestock products. Food Sci. Technol. 49 (3): 342-348.

Navajas, E.A., Glasbey, C.A., McLean, K.A., Fisher, A.V., Charteris, A.J.L., Lambe, N.R, Bünger L, Simm, G., 2006. In vivo measurements of muscle volume by automatic image analysis of spiral computed tomography scans. Anim Sci. 82: 5455

Navajas, E.A., Lambe, N.R., McLean, K.A., Glasbey, C.A., Fisher, A.V., Charteris, A.J.L., Bünger, L., Simm, G., 2007. Accuracy of in vivo muscularity indices measured by computed tomography and their association with carcass quality in lambs. Meat Sci. 75, 533-542.

Navajas, E.A., Richardson, R.I., Fisher, A.V., Hyslop, J.J., Ross, D.W., Prieto, N., Simm, G., Roehe, R., 20 Predicting beef carcass composition using tissue weights of a primal cut assessed by computed tomography. Animal. 4 (11): 1810-1817.

Ohlerth, S., Scharf, G., 2007. Computed tomography in small animals – Basic principles and state of the art applications. Vet. J.173 (2): 254-271.

Orman A., Çalışkan G. Ü., Dikmen S., Üstüner H., Oğan M., Çalışkan Ç.2008. The assessment of carcass composition of Awassi male lambs by realtime ultrasound at two different live weights. Meat Sci. 80:1031–1036.

Orman, A., Caliskan, G.U., Dikmen, S. 2010. The assessment of carcass traits of Awassi lambs by realtime ultrasound at different body weights and sexes. J Anim Sci. 88 (10): 3428-3438.

Prieto, N., Navajas, E.A., Richardson, R.I, Ross, D.W., Hyslop, J.J., Simm, G., Roehe, R., 2010. Predicting beef cuts composition, fatty acids and meat quality characteristics by spiral computed tomography. Meat Sci. 86(3): 770-779.

Reidel, A., Romagosa, E., Feiden, A., Boscolo, W.R., Coldebella, A., Signor, A.A., 2010. Catfish (jundia) body yield and chemical composition fed different protein and energy level in the diet, reared in nettanks, Rev. Bras. Zootecn. 39(2): 233-240.

Ribeiro, F.R.B., Tedeschi, P.A.S.L.O., Rhoades, P.A.S.R.D., Smith, S.B., Martin, S.E., Crouse, S.F., 20 Evaluating the application of dual X-ray energy absorptiometry to assess dissectible and chemical fat and muscle from the 9 th -to-11 th rib section of beef cattle. ARPAS. 27: 472-476. Rius-Vilarrasa, E., Bünger, L., Brotherstone, S., Macfarlane, J.M., Lambe, N.R., Matthews, K.R., Haresign, W., Roehe, R., 2010. Genetic parameters for carcass dimensional measurements from Video Image Analysis and their association with conformation and fat class scores. Livest. Sci.128: 92Rivero, M.A., Ramirez, J.A., Vazquez, J.M., Gil, F., Ramirez, G., Arencibia, A., 2005. Normal anatomical imaging of the thorax in three dogs: computed tomography and macroscopic cross sections with vascular injection. Anat. Histol. Embryol. 34: 215-219.

Sabuncuoğlu, N., 2007. Kesim Hayvanlarında Ultrason Kullanımı. Atatürk Üniv. Ziraat Fak. Derg.38 (1): 189-1

Sahin, E.H., Yardimci, M., Cetingul, I.S., Bayram, I., Sengor, E., 2008. The use of ultrasound to predict the carcass composition of live Akkaraman lambs. Meat Sci. 79(4):716-21. doi: 1016/j.meatsci.2007.11.003. Epub 2007 Nov 22. Shastak, Y., Witzig, M., Hartung, K., Bessei, W., 2012. Rodehutscord M: Comparison and evaluation of bone measurements for the assessment of mineral phosphorus sources in broilers. Poultry Sci. 91: 2210-2220.

Simm, G., 1998. Genetic improvement of cattle and sheep. Farming Press Books, pp. 448.

Simm, G., Dingwall, W.S., 1989. Selection Indexes for Lean Meat Production in Sheep. Livest. Prod. Sci. 21: 223-233.

Şireli, H.D., Koncagül, S., Tutkun, M., 2012. Canlı Kuzularda Karkas Özelliklerinin Tahmin Yöntemleri. MKU Ziraat Fakültesi Dergisi. 17 (1): 13Stanford, K., Jones, S.D.M., Price, MA., 1998. Methods of predicting lamb carcass composition: A review. Small Ruminant Res. 29: 241-254. Szabo, C s

., Babinszky, L.,Verstegen, M.W.A., Vangen O., Jansman, A.J.M., Kanis, E., 1999. The application of digital imaging techniques in the in vivo estimation of the body composition of pigs: a review. Livest. Prod. Sci. 60: 1-11.

Szendro, Z., Metzger, S., Nagy, I., Szabo, A., Petrasi, Z., Donko, T., Horn, P., 2012. Effect of divergent selection for the computer tomography measured thigh muscle volume on productive and carcass traits of growing rabbits. Livest. Sci.149 (1-2): 167-172. Wegener, O.H., 19 Whole body computed tomography. Ed. 2, Blackwell Scientific Publications, Boston. Pp.701.

Yardımcı M., Özbeyaz, C., 1999. Canlı hayvanlarda karkas değerlendirmede ultrason kullanımı. Lalahan Hay. Arast. Enst. Derg. 39 (2):69-82.